CalCULa'tion of blas'r furnace slags as pracTISED IN CERTAIN WORKS IN EUROPE.

By Auguste J. Rossi, C. E.

In another paper (this journal, Vol. 12, 6, 7) we have described a practical method of calculating the charges of a blast furnace in order to obtain a slag of a given type, which does not require the use of any formula or chemical symbol. It may be interesting to compare it with the method followed in certain works, in Eastern France, to arrive at the same result.

What is called "a charge" is this certain weight of ore, limestone and fuel, in relative proportion to each other, which are charged in a furnace at regular intervals of time during twentyfour hours. Technically, it is more properly the calculated weights of the relative qualities of limestone and ore necessary to obtain a given composition of slag, the quantity of fuel per ton of iron smelted, or per charge, being, as a rule, a factor which is assumed and which practice has tanght, but subject to ulterior corrections as may be required.
'The coal is supplied to furnish, by its combustion, the heat and the elements necessary for the chemical reactions which take place and only its ash contributes to the ultinate composition of the slag. In France, the charge is called "lit de fusion," an expression, it seems to us, having a more appropriate meaning than the vague term " charge." The total amount of ore and stone constitutes " a lit de fusion," '" a charge," with an assumed quantity of fuel and the proportion of the two materials, ore and stone, are the elements to be calculated, bearing in mind the character of the slag desired as indicative of a special grade of pig iron and the percentage of ash of the fuel and its composition.

The formula of the slag expected was that of a "SeisguloSilicate" (nonosilicate of Percy), $3 \mathrm{RO}, \mathrm{SiO}_{3}$ or 2 RO . SiO_{2} (orthosilicate, bibasic slag); oxygen of acid =oxygen of base.

Two different kinds of ore were used, of whicl the composition is given below, the calculations being based on the determination of the fire oxygen in the materials, demand a certain techinical knowledge.

> 1.-Gangue of Ore A.
$\mathrm{SiO}_{3} 8.50$ Equiv. $\mathrm{SiO}_{3}=4 \overline{0} .3 \ldots$ Oxygen of $\mathrm{SiO}_{3}=8.50 \times_{4 . \overline{3} .3}^{24}=\ldots \ldots .{ }^{24} 50$

2.-Gangue of Ore B.

Free oxygen, acid 11.61
2.-4sh of (oak.
$\mathrm{SiO}_{3}=4 \uparrow .80$
$\mathrm{Al}_{2} \mathrm{O}_{3}=3: 3.00$
$\mathrm{CaO}=6.00$
$\mathrm{MgO}=3.20$

4.-Limestone.

Free oxygen, basic14.î8
Resump.
Free O, acid, in ore A.. 0.20

، "، in ash of Coke.. 6.96
" O, basic, in limestone -.. 14 . '

Assume 360 kilos. of good coke at 10% of ash, a quantity judged sufficient for "a clarge" or "lit de fusion," taken to be $=880$ kilos. stone and ore. This gives 36 kilos. of ash corresponding to 6.96 $36 \times \frac{}{100}=2.50$ free oxygen of acid in the ash.

Let m be the weight of ore A to be used, in kilogrammes.

"	f	"	"	B	"
"	c	"	of limestone	"	"

Then : The total free oxygen acid $=0.20 \mathrm{~m}+11.61 \mathrm{f}+2.50$.
'Total free oxygen, basic $=14.78 \mathrm{c}$, and since we want to obtain a bibasic slag, that is one in which oxygen, acid=oxygen, basic.
$0.20 \mathrm{~m}+11.61 \mathrm{f}+2.50=14.78 \mathrm{c}$, but we have also the equation of condition, total charge: $f+m+c=880$; we have then $\underbrace{\sim}_{\text {Ore. }} \underset{\text { stone. }}{ }$
two equations containing three unknown quantities. Eliminating c between the two we come to the final equation:
$14.98 \mathrm{~m}+26.39 \mathrm{f}=13003.90$, all equation which is indeterminate, as it should be, since the proportions of ore A and ore B , within the above limits, are evidently optional. Assuming for m certain values we find:

$$
\begin{array}{lll}
\mathrm{m}=50 & \mathrm{f}=464.50 & \mathrm{c}=365.50 \\
\mathrm{~m}=100 & \mathrm{f}=436.00 & \mathrm{c}=344.00 \\
\mathrm{~m}=200 & \mathrm{f}=3 \sim 9.25 & \mathrm{c}=300.75 \\
\mathrm{~m}=300 & \mathrm{f}=322.45 & \mathrm{c}=257.55
\end{array}
$$

and the charges will be:

Ore A - --------50. 5		Or such others based on
Ore B . .-....... 464.50 \}	514.50 kilos.	the other values of m,
Limestone	.365.50	f, c. Coke always $=360$
Coke	360.00 '	kilos.

The ores had about 35% metallic iron, hence 514.50 kilos. of ore would yield $514.50 \times 0.35=180$, iron, and taking the first solution, the relative proportions of the different materials in one charge for one of iron must be :

Keducing to a percentage, we find:
$\mathrm{SiO}_{2}=35.90 \quad$ The type, exactly bibasic, has the $\mathrm{SiO}_{2}=34.88$ $\mathrm{CaO}=64.10$ composition \quad ($\mathrm{CO}=65.12$

The slag is practically a bibasic slag, as closely as possible using two decimals or only one, as in the analyses.

Let us calculate this same slag by the method of reduction to lime, adopting the same data and two indeterminate quantities of the ores A and B.

Ore A:

The saturation for a bibasic slag is $0.538 \mathrm{SiO}_{2}$ for 1 lime. 15.21 lime will take then : $15.21 \times 0.53=8.18 \mathrm{SiO}_{2}$, leaving 0.32 to 0.33% free silica to be saturated for 1 of ore.

Ore B :

Ash of Coke $(10 \% \times 360=36$ Kilos. $)$

64.27 CaO will saturate $64.2 \tau \times 0.538=34.58$ silica, leaving in ash 13.22
13.22% free silica. For 36 ash $\frac{}{100} \times 36=4 . i 6$ free sillca.

Stone:

Silica	=2.50 \ldots--------.- 2.50
$\mathrm{Al}_{\mathrm{CaO}}^{\mathrm{Ca}}$	

1 silica takes up 1.858 lime to make a basic slag. Hence: 2.50 silica will take 2.50×1.858 lime $=4.65$ lime, leaving as free lime in the stone 51.11%.

Let m be the amount of ore A taken as before, f that of ore B, c that of stone. We have then:
Free Silica in Ore A... 11×0.83
، ، in ash of Coal.-.. $\times 4 . i 6$
، ${ }^{6}$ in Ure lB.. 1.93
Total free silict in ores and coal: $0.33 \mathrm{~m}+21.93 \mathrm{f}+4.9$
Total free lime in stone: $\quad 51.11 \mathrm{c}$
and since the free lime of the stone must saturate the free silica of the ores, stone and ash, at the rate of 0.538 silica for 1 of lime the 51.11 c of free lime in stone will take up , $51.11 \times 0.538 \mathrm{c}=57.50 \mathrm{c}$ of silica. We lave then this equation free silica to saturate 0.33 m $+21.93 \mathrm{f}+4 . \hat{1} \mathrm{i}=2 \boldsymbol{2} .50 \mathrm{c}$ silica saturated by stone. All the terms being expressed in silica, SiO_{2}, if we multiply them all by $\frac{8}{15}$, which 15
does not change the equation, we shall have the relation of equality of the oxygen found previously by the other method as new as the difference of the numbers expressing the equivalents of silicat formerly, and now (taking only one or two places of decimals) we have the differences appearing only in hundredths as already observed. $\quad 0.18 \mathrm{~m}+11.68 \mathrm{f}+2.15=14.66 \mathrm{c}$, instead of $0.20 \mathrm{~m}+11.61 \mathrm{f}$ $+2.50=14.58 \mathrm{c}$. We have a second equation of condition the same as in the first method: $\mathrm{f}+\mathrm{m}+\mathrm{c}=880$. By combining these two equations and taking $\mathrm{m}=50$, 100 , ete., we shall find the same figures as already calculated or differing only in hundredths.

